
 - 1 - 

NecX: Enabling Gesture Control Using the Neck 
Ke-Yu Chen, Aniket Handa, Chaoyu Yang, Shuowei Li, Shwetak Patel 

 Team 2 
EE 477, Spring 2014 

 
ABSTRACT 
On-body sensing has been extensively explored by 
researches in the past decade. In this work, we present 
NecX, using neck as an input device. The system exploits 
surface Electromyography (sEMG) to detect the intensity of 
neck muscle. Our system captures the conducted current 
flowing through our sensor when the muscle is stressed, and 
uses the signal variations to identify a neck gesture. In our 
current prototype, we designed 5 neck gestures including 
rotation and tilt, etc. To evaluate the system, we conducted 
a controlled user study and collected data from 2 users, 
presenting an average classification accuracy of 94.1%. 
Furthermore, we implemented a real-time system to apply 
NecX in the gaming control. 
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INTRODUCTION AND RELATED WORK 
Neck is one of such part of our body densely packing tons 
of information. It is the neural pass of the body; it can 
move, give vocal data and provide heart rate information. 
We envision a device that can tap on this information and 
result in novel input technique while it can also keep a track 
on health status. The interaction can be fast enough as 
compared to that of a smartphone, enabling hands-free 
interaction with the phone while both of hands are not 
accessible. In addition, it is possible to use this wearable 
device for health sensing, for example, monitoring the 
tiredness, heart rate or even muscle stress. It can take many 
forms, such by being part of the clothing collar or in a form 
of a pendant. We also plan to focus on providing 
accessibility to special people who cannot move lower part 
of their body or people aging with disabilities. 

In this project, we introduce NecX, a novel input device 
enabling health monitoring and hands-free interaction. Our 
system uses surface Electromyography (sEMG) to achieve 
such capabilities. When muscle is stressed, a current issues 
from the motor unit flows through and actuates the muscle. 
By attaching electrode pads to the target muscle (in our 
case, on both side of neck), the current will be conducted 
through the pads and picked by our sensor board. Our 
algorithm captures these signal variations when the muscle 
is in action and uses it for gesture detection and 

classification.  

sEMG sensing has been explored in previous research for 
sensing muscle emotion. Since EMG signal is extremely 
sensitive to nuance muscle movement, such sEMG sensing 
via facial muscle can distinguish the emotional state with 
minor movements or even no visible representation [1]. 
Researchers also explored muscle-computer interfaces 
(MCI) using neck motions. The sEMG sensing via forearm 
muscle [2] activity explores gesture of five fingers. The 
work can distinguish different position and pressure, as well 
as tapping and lifting of fingers. Wu et al. built a real-time 
surface EMG sensing system of detecting neck and 
shoulder movement [3]. Similarly, Zhang et al. uses sEMG 
sensing to identify tongue muscle activity and can 
differentiate six tongue gestures while the lower face and 
neck is resting [4]. Rofouei et al. developed a non-invasive, 
wearable neck-cuff system to monitoring the quality of 
sleep. Others developed a wearable master device for the 
disabled who has spinal injury with very limited mobility 
control below their neck [6].  

In NecX, we target on both normal users and people with 
disabilities. We expect this wearable device can be used as 
a health monitoring tool and a hands-free input device (see 
Figure 1). This device is capable of capturing the user’s 
heart rate and detecting muscle stress even when the head 
and neck is stationary; by simply perform a neck gestures, 
the user is able to pick up a call or change the volume of the 
songs while keeping the phone in the pocket. Different from 
the previous study, we used only 2 channels of sEMG data 
to enable such functions. We believe reducing the number 
of channels can enhance flexibility in designing a new form 

 
Figure 1: NecX detects and classifies 3 neck gestures using 

EMG sensing. 
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factor and also reduce the power consumption for a longer 
battery life. 

THEORY OF OPERATION 
The electrical signals of Surface Electromyography (sEMG) 
are produced with muscle activations. The observation of 
signals is shown as voltage changes with electrodes 
attached on the skin of users..The sEMG signal is acquired 
through differential amplification, which would stabilize 
the output signal, and filter noise. The range of sEMG 
usually varies from 5 Hz to 250 Hz; however, the real time 
experiment suggests 65 – 180 Hz as cut-off frequency to 
avoid strong DC noise at 60 Hz.  

The best electrodes used for measuring sEMG is pre-gelled 
Ag – AgCl (Sliver / Sliver Chloride) electrodes due to its 
low impedance and high stability [8]. In order to obtain the 
best performance, its placement must satisfy some 
requirements. As shown in Fig 2, it should be placed 
between the motor unit and the tedious insertion, along the 
longitudinal midline of the muscle [7]. Secondly, the 
positive lead and negative lead should be separate with 1 ~ 
2cm. Finally, the reference electrodes should be placed at a 
neutral muscle different from the EMG detecting surface 
with bipolar configuration. Surface Electromyography 
(sEMG) is used for evaluation and recording surface 
electrical activity caused by skeletal muscles.  

There are always some noises existing that cannot be 
avoided [8]. One is ambient noise, like radiated EMI 
surrounding users with frequency of 50 – 60 Hz. The other 
is transducer noise, like different impedance between the 
skin and electrode sensors.  Some other issues usually occur 
with measuring surface EMG. For example, a neck gesture 
may displace the activated muscle away from the skin 
where the electrodes are attached. This may cause the 
inconsistency in EMG signal. 

Some other issues usually occur with measuring sEMG. It 
evolves consistency in impedance, which is critical for the 
reliability of sEMG measurements. Another issue comes up 
with different kind of bio-signals of users such as ECG 
(heart rate), EEG (brain), EOG (eye), which appears as 
periodic noise to sEMG signal [9] . 

SYSTEM IMPLEMENTATION DETAILS 
Figure 3 shows the system architecture and data flow. The 
system first identifies an event of muscle movement, and 
then extracts features for gesture recognition. In this 
section, we will detail the hardware design and the 
algorithms for gesture detection and classification. 

Hardware 
To measure the sEMG on the neck, we use the 
OLIMEXINO-328 and two SHIELD-EKG-EMG boards, 
each of which collects sEMG data from one side of the 
neck (see Fig 4). Electrode pads are attached on the user’s 
neck; the red pad (positive) and black pad (negative) are 
instrumented on the side of neck and white pad (ground) is 
attached on the back of the neck. Instrumenting the white 
pad behind the neck (i.e., at a neutral position) can reduce 
ambient noise. The Olimex-328 is an Arduino-based 
motherboard and has a 10-bit ADC on board. We sample 
the analog data at 256 Hz, which is sufficient for our use 
case as we expect a neck gesture should be relatively slow. 
Finally, the data are streamed to a laptop for gesture 
recognition through Bluetooth. To better understand the 
capability of Olimex-328, we simulated the circuit in 
MultiSim and verify that the board has a low pass filter 
with the cut-off frequency of 3.4 kHz (see Fig 6). We also 
designed a 3D-printing case for this prototype (Fig 5). 

Neck Gesture Detection 
As described earlier, any muscle movements on neck 
causes a current flowing through the electrode pads, which 
raises the output voltage from the Olimex-328 board. When 
muscle relaxes, the voltage drops to the baseline. Our first 
step is to identify signal variations, and to recognize an 
event of muscle excitation.  

Figure 7 shows the process of gesture segmentation. We 
first smooth the raw data to remove noises. We next applied 
the 1st derivative on both channels, after which we took the 

 
Figure 3: System architecture and data flow. The raw data was 

first smoothed to remove noise. After the system identifies a 
segment of muscle movement, it feeds into our classifier for 

gesture classification. 

 
Figure 2: Electrodes setup for measuring sEMG. To get the 
best measurements, the electrodes should be placed at the 

center between the motor unit and tedious insertion. 

 
Figure 4: The sensor board (left) and lids (right). 
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absolute value of both channels and summed them up (see 
the figure of Total Variation in Fig 7). To identify the data 
segment of a muscle movement, we next apply another 1st 
derivative on the curve and apply the thresholds on it (the 
figure of 1st Derivative in Fig 7). The intersection of the 
curve and the threshold line (marked as red dots in Fig 7) 
represents the start and end of a muscle movement event, 
which shows as the green segment in Fig 7. 

Festures for Neck Gesture Classification 
After an event is detected, features are extracted from the 
recognized segment. We chose various features for gesture 
classification, including: (1) Auto-correlation of two 
channels,  (2) Cross-correlation of channel 1 and 2, (3) 
difference of the max values between two channels (4) 
difference of the min value between two channels (5) 
difference of the max and min value in each channel, and (6) 
total zero crossing counts in both channels. Therefore, we 
build an 8-tuple feature vector for gesture classification. 

EXPERIMENTAL PROCEDURE AND RESULTS 
To evaluate the system, we conducted a small, controlled 
user study. We recruited two participants to perform five 
neck gestures: left rotate (LRotate), right rotate (RRotate), 
left tilt (LTilt), right tilt (RTilt) and up tilt (UTilt). 
Participants were asked to perform each gesture with 10 
repetitions. The collected data were then processed using 
our algorithm for event detection and feature extraction. 
Once a muscle movement event is identified and the feature 
vector is built, the vector is fed into WEKA for gesture 
classification. We used the collected data to train a 5-class 
RFBNetwork model (i.e., each class representing one 

gesture). In WEKA, we perform 10-fold cross validation 
and obtained a classification accuracy of 94.1%. Figure 9 
shows the confusion matrix. 

Real-time Implementation 
The offline analysis described above shows the feasibility 
of using NecX to detect and classify neck gestures; 
however, it is also important to demonstrate the ability for 
NecX to work in real-time. We therefore implemented a 
real-time version of our system and designed a few 
prototype applications. In order for NecX to run in real-time, 
we modify the classifier to enhance the robustness against 
any possible noise. In particular, we used 5 classifiers to 
perform the same gesture prediction at the same time, 
including Support Vector Machine (SVM), RFBNetwork, 
Decision Tree (LMT), BayesNetwork (BayesNet) and 
Nearest Neighbor (NNge). The final decision is determined 
by a majority vote from the predictions of these 5 classifiers. 
Figure 8 shows the process of leveraging this stacked 
classifier. In the video figure, we showed the on-the-fly 
neck gestures recognition and used NecX to play Tetris and 
to detect heart rate and muscle stress. 

CHALLENGES 
Although we showed the feasibility of using NecX in both 
the off-line analysis (accuracy of 94.1%), we actually 
encountered some difficulties in implementing the real-time 
system. The issues arouse from the hardware limitation. 
Since the electrode pads we used in the studies are pre-
gelled, the pads become partially detached from the skin, 
which changes the perceived signals significantly. This 
means that the signal patterns are barely reproducible and 
therefore, the classification accuracy drops dramatically. To 
overcome this issue, we included a stacked classifier in the 
real-time implementation (Fig 8) on a smaller gesture set, 
including left rotate (LRotate), up tilt (UTilt) and shaking 
the head.. 

The original daughterboards SHIELD-EKG-EMG used in 
this project have shortage circuit issue with onboard ADC. 
When reference voltage (AREF) pin is connected, the 
temperature suddenly jumps from 20° C (68° F) to 50° C 
(122° F) within 1 second, which could potentially damage 
both chip and users.  Also the reference voltage for boards 
is 3.3V, which is supposed to be 1.1V. Both issues proved 
the AREF pin is shorted. Thus we cut a wire on board, 
which fix the bug. With this modification, power 

 
Figure 6: Schematic of the low-pass filter (left) and MultiSim 

simulation (right). The Olimex-328 board uses a low-pass 
filter with cut-off frequency of 3.4 kHz. 

 
Figure 7: Segmentation algorithm. We applied the threshold 
(black lines) on the 1st Derivative curve and the intersections 

represent the start and end of a muscle event. 

 
Figure 5: 3D printing case for NecX. 
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consumption is reduced to half of the originals, and twice 
battery life as benefit. 

FUTURE WORK AND DISSCUSSION 
In order to minimize the instrumentation overhead over the 
users, we only used 2 channels of sEMG data for gesture 
recognition. In addition, the electrode pads used in our 
prototype would partially detached from our skin, which 
change the signal and affect the classification result. Our 
next step is to adopt other electrodes such as those in [2] to 
mitigate these issues, and will use more channels to explore 
more gestures.  

Our primary goal within this quarter is to enable gesture 
control using neck. The future work will aim at providing 
more bio-sensing capabilities such as heart rate monitoring, 
muscle stress detection and thirsty stage detection. 
Measuring ECG parallel to sEMG data could potentially 
enable use our system as a health monitoring tool. 

Besides using NecX as an input device, it is also possible to 
provide haptic feedback to user whenever needed. For 
example, when the system detects a muscle stress around 
the user’s neck, the system can vibrate the device, 
reminding users to change their neck position before any 
muscle injure occurs. We leave this as the future work. 

CONCLUSION 
In this work, we proposed a new wearable device, called 
NecX, using neck as the input. We leveraged sEMG sensing 
to enable neck gesture control. In particular, our algorithm 
can reliably recognize an event of muscle movement and 
presented the classification of 94.1% in a 5-class 
RFBNetwork model (i.e., each class representing a gesture). 
We also implement a real-time system that leverages a 
stacked classifier to show the feasibility of using our 
approach in gaming control. We envision such wearable 
device could be applied to, besides the gesture control 
presented in this paper, other health applications such as 
muscle stress detection and heart rate monitoring. 
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Figure 8: The stacked classifier for real-time gesture 

recognition. The prediction result is based on the majority vote 
from the outcomes of respective classifiers. 

 
Figure 9: Confusion matrix of the classification result. 


